大数据书籍 Big data books
数据算法:Hadoop/Spark大数据处理技巧
Mahmoud Parsian计算机科学博士力作,31个Hadoop与Spark大数据算法,包含基本设计模式、优化技术和数据挖掘及机器学习解决方案,涵盖生物信息学、基因组学、统计和社交网络分析等领域。
编辑推荐
适读人群 :这本书面向了解Java基础知识并且想使用Hadoop和Spark 开发MapReduce 算法(数据挖掘、机器学习、生物信息技术、基因组和统计领域)和解决方案的软件工程师、软件架构师、数据科学家和应用开发人员。
市面上N0.1本关于Hadoop与Spark大数据处理技巧的教程,提供了丰富的算法和工具。
市面上N0.1本关于Hadoop与Spark大数据处理技巧的教程,提供了丰富的算法和工具。
内容简介
《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。
主要内容包括:
■ 完成超大量交易的购物篮分析。
■ 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。
■ 使用超大基因组数据完成DNA和RNA测序。
■ 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。
■ 推荐算法和成对文档相似性。
■ 线性回归、Cox回归和皮尔逊(Pearson)相关分析。
■ 等位基因频率和DNA挖掘。
■ 社交网络分析(推荐系统、三角形计数和情感分析)。
作者简介
Mahmoud Parsian,计算机科学博士,是一位热衷于实践的软件专家,作为开发人员、设计人员、架构师和作者,他有30多年的软件开发经验。目前领导着Illumina的大数据团队,在过去15年间,他主要从事Java (服务器端)、数据库、MapReduce和分布式计算的有关工作。Mahmoud还著有《JDBC Recipes》和《JDBC Metadata, MySQL,and Oracle Recipes》等书(均由Apress出版)。
相关图书
Spark大数据分析实战
基于Spark2.4.x新版本编撰,通俗易懂,无痛上手结合丰富案例详解Spark生态系统主流的大数据处理技术
大数据运营与管理 数据中心数字化转型之路
涵盖通信、金融、政府、电力等15个真实案例+4个大型案例
大数据湖最佳实践
什么是数据湖?为什么企业需要它?本书介绍了来自各行业数据专家的数据湖方案,参考这些最佳实践,来构建企业数据湖。大型传统企业数据岗位人员必读。
Hadoop 3大数据技术快速入门/大数据技术丛书
快速学习Hadoop、Hive、HBase、Docker技术
大数据技术架构:核心原理与应用实践
洞悉人工智能本质特征、从0到1掌握大数据技术。技术畅销书作者李智慧力作!
大数据应用与技术丛书·数据仓库工具箱(第3版):维度建模权威指南 [The Data Warehouse Toolkit:The Definitive Guide to Dimensional Modeling, Third Edition]
维度建模技术、模式和实践,14个案例涉及零售业、电子商务、客户关系管理、采购、库存、订单管理、会计、人力资源、金融服务、医疗卫生、保险、教育、电信和运输等
暂无评论...